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Abstract. The Aleksander model of neural networks replaces the connection weights of 
conventional models by logic devices (or Boolean functions). Learning is achieved by 
adjusting the Boolean functions stepwise via a ‘training-with-noise’ algorithm. We present 
a theory of the statistical dynamical properties of the randomly connected model and 
demonstrate that, in the limit of large but dilute connectivity c of the nodes, the storage 
capacity for associative memory is of the order (2/c2)2‘, which corresponds, roughly 
speaking, to an average of one nearest-neighbouring pattern stored at site distances 2 on 
each node. Two parameters are introduced into the learning algorithm: qr and qc being 
respectively the probabilities to register a correct bit and erase an incorrect one. The effects 
of varying q v ,  qc and the training noise level on the storage capacity (after very long 
training) are discussed. In the limit of low training noise level, the training algorithm is 
equivalent to the so-called ‘proximity rules‘. Study of its retrieval properties shows that 
the model can be described as ‘short ranged’, whereas the Hopfield model is ‘long ranged’. 
The advantages and disadvantages of introducing the intermediate U state into the system 
are also discussed. 

1. Introduction 

In the past few years, there has been an upsurge of interest in neural network models 
in both the fields of physics and of computer science. In the physics community, the 
introduction of the Hopfield-Little model [ 1,2]  has enabled statistical mechanical 
concepts to be applied to the system [3]. Since then, various statistical properties of 
the model have been extensively studied. These include equilibrium [4] and dynamical 
[ 5 ]  properties, and optimal storage capacity [6]. In the computer science community, 
interest has been focused more on feedforward networks and Boltzmann machines 
[7]. An error propagation algorithm [8] has been proposed for learning in such systems, 
but simulations have shown that the required number of training steps for some 
‘hard-learning’ problems is excessively large [9]. 

Recently, Aleksander [ 101 has proposed an alternative neural network model which 
exhibits remarkable performance for some ‘hard-learning’ problems. Conventional 
models such as Hopfield-Little [ 1,2]  learn by adjusting the connection weights between 
the nodes and retrieve by updating the states of the nodes according to the local field. 
The Aleksander model, on the other hand, replaces the connection weights by logic 
devices, or random access memories ( R A M ) ,  i.e. the state of a node is updated according 
to a Boolean function of the states of those nodes feeding it. Learning is achieved by 
adjusting the Boolean functions stepwise via a ‘training-with-noise’ algorithm. 
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Immediately, we see a further merit of the Aleksander model in  its use of readily 
accessible R A M  technology. Besides, since there are 2‘ adjustable parameters for a 
RAM of connectivity c, it has a potential for large storage capacity. However, with a 
few exceptions [ l l ,  121, Boolean neural networks have not been widely studied in 
physics, and their statistical properties are not yet known. In a previous letter [13], 
we presented a theory for the statistical properties of a randomly connected Boolean 
model for storing uncorrelated patterns, in the thermodynamic limit that the number 
of nodes N approaches infinity. There we explained the model briefly with the help 
of a few examples and, with some appropriate approximations, showed that the 
dynamics of the system is described by a recursion relation for the fractional Hamming 
distance between the state configuration of the nodes and one of the stored patterns, 
the quality of retrieval and the basin of attraction being determined by the fixed points 
of the relation. In the limit of large connectivity c of the nodes, we derived an expression 
for the storage capacity for associative memory. 

In this paper, we study the Boolean model in more detail, and consider various 
factors affecting the storage capacity. An attempt to improve the performance of the 
network, originally proposed by Aleksander, is to allow the network to store, besides 
bits of 1 and 0, an intermediate undefined (or U )  state, i.e. a state which outputs 
randomly 1 or 0 whenever it is involved in the network dynamics. We shall discuss 
the advantages and disadvantages of introducing the undefined state, and show that 
the overall improvement in the storage capacity is only marginal. 

We shall also introduce two more parameters into the learning algorithm: the 
registration probability qr and the correction probability qc being respectively the 
probabilities to register a correct bit and erase an incorrect one. It turns out that the 
ratio qc/qr determines, after very long training, the fraction of bits in the U state, and 
hence the behaviour of the system. 

Another feature of the Aleksander model is the use of noisy example patterns 
during training, so that noisy input patterns can be ‘recognised’ during retrieval, i.e. 
associative memory is possible. However, the training noise itself causes disruption 
of the stored information. We shall discuss the effects of varying q J q r  and the training 
noise level on the storage capacity (after very long training). 

Some insights about the learning algorithm will be obtained by comparison with 
a class of learning rules called the proximity rules which, roughly speaking, allocate 
the stored bits by their ‘proximity’ to the bits of the patterns in the RAM space. This 
leads us to propose the majority rule, which gives a higher storage capacity than any 
noise-trained algorithm. 

We shall also compare the retrieval properties of the Boolean and conventional 
models, and find that, in a sense to be discussed below, the Boolean model can be 
considered as ‘short ranged’, in contrast to the ‘long ranged’ models of Hopfield and 
Little. 

The plan of the paper is as follows. In §§ 2-5, we illustrate the basic concepts by 
considering, in order, the behaviour of the network in the following cases: simple 
storage of one pattern ( 0  2 ) ,  storage of one pattern for associative memory (0 3), storage 
of a pattern and its complement (§ 4), and storage of two correlated patterns ( 0  5 ) .  
This facilitates consideration of the more complicated case of storing p uncorrelated 
patterns in §§ 6-9. We derive the storage capacity for associative memory in 0 6 and 
consider its dependence on various factors in § 7.  In § 8, we compare the training-with- 
noise algorithm with the proximity rules, and in 9 9, we compare the retrieval properties 
of the Boolean and conventional neural models. Section 10 is devoted to our conclusion. 
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N t h  0 

2. Basic formulation and simple storage of one pattern 

r 

0 - N t h  . . .  

Consider a network of N nodes of states 1 or 0, each being fed by c others. Each 
node is a variable logic device whose state may be described by a complete truth table. 
In other words, if the ith node is fed by the i,th, . . . i,th nodes, then its output V, may 
be 1 or 0 depending on the input sequence ( V,, , . . . , V,< ). The ith node is therefore 
specified by a Boolean function F, whose domain consists of 2' elements mapping 
onto the values 1 or 0. See figure 1. 

Input N nodes OUtDUt 

1-1 . . .  0 - 1st 
1st 0 

Figure 1. The Boolean neural network. 

Two possible kinds of dynamics can be used to determine the time evolution of 
the system. For synchronous (parallel) dynamics, the output of all nodes at time t + 1 
are updated simultaneously according to the corresponding Boolean functions of the 
input sequence at time t. Therefore, the equation of motion is: 

i = l ,  . . . ,  N. 

For asynchronous dynamics, each node is updated with a probability 7 - l  per unit 
time, and the updated output is determined by the instantaneous value of the Boolean 
function. 

We shall be concerned with the situation where the connectivity of the nodes is 
random, but quenched. The network therefore has the same architecture as the so-called 
Kauffman model [14,15]. 

Alternatively, we can treat each node as the output of a set of 2' sites (or 'pigeon 
holes'), the address of each being a c-bit word of 1s and Os. The output corresponding 
to the input sequence ( V,, , . . . , VI< ) is stored in the site whose address is identical to 
the sequence. An input sequence will therefore yield as output the data stored in the 
site with the identical address. We shall frequently refer to this pigeon-hole picture 
in subsequent discussions, as it generates valuable insight. 
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Memory is stored in the Boolean function F,. In the later sections we shall discuss 
several methods of training the F, to learn patterns. Here we note only one simple 
condition for ensuring that a single pattern is persistently maintained; this is to store 
the bits of the pattern at the sites which are addressed by the pattern itself. In other 
words, a pattern (5, ; i = 1 ,  . . . N }  is maintained if once initiated by the allocation 

i = l ,  . . .  N. F,(5, ,  5 ' . . 51,) = 5, (2.2) 

Retrieval is concerned with the consequences of presenting a possibly noisy pattern 
to the network and studying the evolution of the node states. During retrieval, the 
network dynamics can be studied by monitoring the time evolution of the distances 
between the state configuration of the nodes and those of the stored patterns; the 
distance between two configurations is the fraction of different bit-entries. In general, 
this is not sufficient, for we have to take into account the detailed correlation of the 
output configuration with the Boolean functions F, and their input configurations. 
However, it has been proposed [ 161 that correlation effects are negligible for c <<. In N. 
This is the so-called annealed approximation [15]. We shall employ it below. 

To ensure an unbiased initial state, and to allow for a more flexible response, 
Aleksander modified the above two-state system into a three-state one by introducing 
an undejined (or U )  state, i.e. a site in U state has an equal probability of outputting 
a 1 or 0 whenever it is addressed. As we shall see, the statistical properties of the 
three-state system are much more intricate, and their generalisation to the two-state 
system is rather straightforward. We shall therefore concentrate our discussion on the 
three-state system, generalising to the two-state one where appropriate. A further 
comparison of the two systems will be published elsewhere [ 171. 

In the Aleksander model, the sites of all nodes are initialised to U. Let us first 
consider the simplest case of storing only one pattern in the network with the allocation 
(2.2), but otherwise with all sites remaining in the U state. Within the annealed 
approximation, the average distance x between the state configuration of the nodes 
and the stored pattern satisfies the recursion relation [15, 161: 

X ( f +  1) = f ( x ( t ) )  for parallel dynamics (2.3) 
or 

where 

7 dx( t ) /dt  = f ( x (  t ) )  - x (  t )  for asynchronous dynamics (2.4) 

f ( x )  = +[ 1 - ( 1  - X)'] .  (2.5) 
This equation can easily be derived: the distance x gives the probability that an input 
bit is in error when compared with the stored pattern. The site storing the correct 
output bit is addressed only if all the input bits to a node are correct, this happening 
with a probability of ( 1  - x)'. Otherwise, with probability [ 1 - ( 1  - x)'], a site in the 
U state is addressed, outputting the correct bit with a probability of i. Hence the 
expression o f f ( x )  in (2.51, which is the same as that obtained by Derrida and Pomeau 
[ 151 for the evolution of distance between two configurations for an annealed Kauffman 
net. We note that f ( x )  has the same form for a two-state system within the annealed 
approximation, if the sites are randomly initialised and only the allocation of (2.2) 
imposed. 

f ( x )  is called the retrieval function, and the curve of f ( x )  against x is called the 
retrieval curve. As the system evolves, x ( t )  approaches one of the stable fixed points 
x* of the curve, i.e.f(x*) = x*. Graphically, the fixed points are given by the intersection 
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of the retrieval curve and the line y = x. The stable fixed points are those with slope 
I f ' (x*) l<  1 .  A stable fixed point at or near x = 0 means that the network has associative 
memory, i.e. starting with an initial configuration which has only partial agreement 
with the stored pattern, it eventually retrieves the pattern. Unfortunately, x = 0 is an 
unstable fixed point of the retrieval curve for c > 2 .  For large c, the stable fixed point 
x* approaches and even for c = 3, x* = 0.382. In other words, for c > 2, the network 
has at best very poor associative memory if the pattern is only stored at the correct 
sites. (Note that here and below we consider only the average evolution in the annealed 
approximation. In a quenched network storing a single pattern, the U states will ensure 
eventual retrieval in 0 ( 2 N )  steps, when the probability that an evolving configuration 
falls into the 'trap' of the stored pattern becomes significant, but this is irrelevant in 
the thermodynamic limit.) 

3. Training with noise and storage of one pattern for associative memory 

To ensure associative memory of a single pattern, an obvious but uninteresting method 
is to store the correct bit in every site of a node. The information storage in this way, 
however, is excessive. By introducing the notion of training with noise [lo,  181, it is 
sufficient to store the correct bit in a small fraction of the sites. Let us start with all 
sites in the U state. During a training step, a slightly noisy version of the pattern to 
be stored is presented to the input of the nodes, and the correct bit of the pattern is 
stored in the addressed site. (If a correct bit is already stored in the site it is, of course, 
unaltered.) Finally, after s noisy training steps, the system is also trained with the 
noiseless pattern. Now, if d is the probability that a bit of such an example pattern is 
in error, the recursion relation ( 2 . 5 )  has to be replaced by: 

f ( x ) = f  r = l  ( f ) [ l - d ~ ( l - d i " l " x ' ( l - x ) ~ - ~ .  (3.1) 

Again, this equation can easily be derived: consider a site at a site distance r from 
the pattern, i.e. its address is r bits different from the input sequence of the (correct) 
pattern. The probability that this site is addressed in a training step is d' (  1 - d ) c - r ,  
The probability that this site is still unaddressed after s training steps, and hence is 
still in the U state, is [ l  - d r ( l  -d)'-'Ii. Such a site has a probability f of giving an 
incorrect bit during retrieval. Now suppose that, during retrieval, the input configur- 
ation has a fractional error x when compared with the correct pattern. The probability 
that the considered site is being addressed is therefore x'(1 - x ) ' - l .  Summing over all 
the possible sites, we obtain ( 3 . 1 ) .  Since the network is also trained with the noiseless 
pattern after the training steps, the r = O  term vanishes. (Again, we note that the 
retrieval function for the two-state system is the same within the annealed approxi- 
mation.) 

As shown in figure 2, the fixed point at x = 0 changes from unstable to stable after 
a number of training steps and associative memory becomes possible. The number of 
training steps to achieve this is 

or, strictly, the next greatest integer. The optimal noise to minimise the number of 
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f ix1 

X 

Figure 2. The retrieval curve of storing one pattern by 'training with noise' for c = 4, d = a  
and, from top to bottom, s = 1, 4 and 7. 

steps is 

d = l /c .  (3.3) 

From the slope of the retrieval function near x = 0, we see that associative memory 
depends on the extent to which the correct bit is stored in sites at site distances 1 from 
a pattern. With d = l / c ,  these sites are most frequently addressed, thus minimising 
the number of training steps. 

The optimal number of steps can be as small as three (for c = 3), while for c >> 1 it 
approaches 2 . 7 1 8 ~  ln(c/2),  which is a surprisingly small fraction of 2', the total number 
of sites per node. Hence, the number of training steps to achieve associative memory 
is encouragingly small, implying also a small spread of the stored information on each 
node and hence offering the potential for storage of many patterns. 

4. The training algorithm and the storage of complementary patterns 

For the storage of more than one pattern, it is inevitable that conflicting bits may have 
to be stored at the same site. The following generalised training-with-noise algorithm 
is therefore introduced. 

( I )  All the sites are initialised to U states. 
( 2 )  During each training step, an examplepattern ispresented to the input of the nodes: 
( a )  i f  the correct bit is already stored in an addressed site, it is left unaltered; 
( b )  i f an  addressed site is in the U state, the correct bit of the example pattern is stored 

at the site with a probability qr (or  the registration probability); 
( c )  i f  the incorrect bit is already stored in an addressed site, it is changed to a U state 

with a probability qc (or  the correction probability). 
In Aleksander's original algorithm, qc = qr = 1. 
It is illuminating to consider training the network with a pattern {i ,}  and its 

complement { E }  (i.e. = 1 - &).  Consider a site on a particular node at a site distance 
r from that accessed by pattern { i , }  (and hence at a site distance c - r from { E } ) .  The 
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site may be in the U state, or store a bit from pattern {l,}, or from its complement. Let 
these probabilities be Po, P+ and P- respectively, satisfying 

P++Po+P-= 1. (4.1) 
These probabilities depend on the sequence of training steps. Thus if the pattern {11} 
is presented as the sth training example, then the probabilities before and after the 
step are related by the matrix 

1 qrvr 0 P+(s - 1 )  
(4.2) 

where 7, = d'( 1 - d )  c - r  is the probability that the site is addressed by the input sequence 
of the example pattern. This equation is a direct consequence of the training-with-noise 
algorithm. The 3 x 3 matrix relating to the two probability distributions is called the 
training matrix of the pattern {l,}. The training matrices T+ and T- of the patterns 
(5,) and { E }  respectively are therefore 

(4.3) 
0 1 - qcvc-1 0 

0 0 1-qcvr 0 q r v c - r  1 

Starting from an initial probability distribution P(0)  = (P+(O), P,,(O), P-(0))T, the 
probability distribution P ( s )  after the training sequence T,,,, , Tc2, ,  . . . , T,(s)  is given by 

(4.4) P ( s )  = T ( , ,  . . . 7-t(21T,,J-Y0). 

Averaging over all the possible training sequences, we have 

( P ( s ) )  = [(T+ +T-)/2IsP(O). (4.5) 
The behaviour of the system can best be analysed in the limit s + cc when P ( s )  

should approach an equilibrium distribution P*. In this limit, we expect that P* should 
satisfy 

P* = [(T++T-)/2]P*. (4.6) 
Because of the normalisation condition (4.1) of P, the averaged training matrix 
(T++T-)/2 always has an eigenvalue equal to 1 ,  and the corresponding eigenvector 
gives the equilibrium distribution 

(4.7) 

It should, however, be noticed that the equilibrium is a dynamic one, in the sense that 
an individual site may flip between 1, U and 0 from one training step to another, 
although the ouerull distribution is unchanged. 

The disruption, i.e. the probability that the site outputs an incorrect bit with respect 
to the pattern {it}, is therefore 

(4.8) U ,  = f (  1 - m,)  
where 
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We shall refer to mr as the trained polarisation at a site distance r from the pattern 
{s,}. For later reference, we also write down the probability U ,  of a site in the U state 
at a site distance r, 

(4.10) 

It is convenient to simplify the above expressions by introducing the concept of a 
training-noise temperature. Using analogies from thermodynamics, we define the noise 
temperature T = p-' by the ratio equation d : (1 - d )  = e-@ : 1. In other words, the 
probabilities of a bit being correct or incorrect in an example pattern are respectively 
(1 +exp)- ' .  This simplifies (4.9) and (4.10) into 

(4.11) 

(4.12) 

where 

p h  = f cosh-'( qc/2qr) (4.13) 

and Eh and Oh are even and odd operators defined by 

for any function f (  h ) .  Clearly, m, corresponds to the magnetisation (polarisation) of 
an king spin in a field ( h  - r +  c / 2 ) .  

Before we proceed, it is legitimate to question whether the above expressions of 
disruptions, averaged over all training sequences, are valid for a particular training 
sequence chosen at random, as intuition tells us that the last few example patterns 
affect the system most. In our subsequent discussions, various quantities like the 
retrieval error and the storage capacity will be derived. In general, they involve 
non-linear expressions of the disruptions. It is therefore invalid to perform the average 
over training sequences before deriving these quantities. instead, a distribution of 
these quantities should be considered for an ensemble of training sequences. 

To consider an exactly solvable case, we shall henceforth modify the learning 
algorithm to an averaged algorithm, which states the following. 

During each training step, examples of all patterns to be stored are presented to the 
input. For each node, one of the patterns is chosen at random, and the information of 
that pattern is stored a t  the site addressed by  its own input sequence, according to the 
previous algorithm. 

The validity of the above equations for this algorithm is obvious, since the corre- 
sponding training matrix in each step is the average of those of all patterns. 

The retrieval curve can now be derived easily. Let x be the distance between the 
state configuration of the nodes and the pattern {l,}. The retrieval function after very 
long training is then given by 

(4.14) 
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Again, to ensure better performance, we have, after the training procedure, also stored 
the correct bits of both patterns at the appropriate sites. Thus the r = 0 term is dropped 
and the r = c term is replaced by xc. 

To demonstrate the effects of training, we also write down for qc = qr = 1 the retrieval 
function f s ( x )  after s training steps, 

(4.15) 

As shown in figure 3, the fixed points of the retrieval curve at x = 0 and 1 become 
stable after a number of training steps, showing the network is able to retrieve both 
patterns, and x = f becomes unstable. The unstable fixed point can therefore be 
considered as the basin boundary separating the two basins of attraction, after sufficient 
training for retrieval. 

1 .o  

0.8 

0.6 
f 1x1 

0 4  

0 2  

0 0 2  0 L  0 6  0 8  1 0  

X 

Figure3. The retrieval curve of storing two complementary patterns for c = 4, d = i, q < / q ,  = 1 
and for s = 1,  7 ,  30, JS respectively. The curve switches from non-retrieving to retrieving 
at s = 16. 

1 .o  

0.8 

0.6 
f 1x1 

0.4  

0 . 2  

0 0 2  0 L  0.6 0 8  1 0  

X 

Figure3. The retrieval curve of storing two complementary patterns for c = 4, d = i, q < / q ,  = 1 
and for s = 1,  7 ,  30, JS respectively. The curve switches from non-retrieving to retrieving 
at s = 16. 

We now consider how the above analysis can be adapted to the two-state system. 
Without the U state, the training-with-noise algorithm has to be modified. While a 
correct bit of an example pattern is still left unaltered in an addressed site, the incorrect 
bit is directly changed to the correct one with a probability qc (without going through 
any intermediate state). The retrieval function in this case is different from that for 
the three-state system. The derivation, however, is very similar. The extent of training 
in various sites is now described by two probabilities P+ and P- instead of three. The 
averaged training matrix is therefore 2 x 2  and is given at a site distance r by 

(4.16) 

Starting from a random initial state, the retrieval function for qc= 1 after s training 
steps is given by 

(4.17) 
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where 

x'(1 -x)C-r+XC. (4.18) 

It is interesting to note that after very long training, the behaviour of the two-state 
system approaches that of the three-state one with qc/qr  = 2 .  

5. Storage of two correlated patterns 

Correlated patterns are most conveniently specified by replacing the Boolean states V,  
of the nodes with Ising variables Si = *l ,  namely Si = 2 V,  - 1 for V,  = 1 , O .  The overlap 
between patterns {Si} = {[ t }  and {Si} = { [ f }  is then defined as 

Hence p = 0 implies uncorrelated patterns, and p = - 1 implies complementary patterns. 
In this section we consider the storage and retrieval of two correlated patterns. 

Whereas in the case of two complementary patterns in which all nodes are trained 
to output opposite bits for the two patterns, for two correlated patterns of general 
overlap p, a fraction (1 + p ) / 2  of the nodes are trained to output the same bits. The 
network dynamics therefore have to be specified by two variables. Let x and y be the 
fractional errors of the state configuration with respect to pattern 1 for those nodes 
outputting respectively the same and different bits for patterns 1 and 2. In other words, 
P(S, = -[ t l [ f  = [f) = x and P ( S ,  = -,$;it: = -sf) = y .  After very long training, we then 

for parallel dynamics I 

y'(1 - Y ) r -  
C !  

g(x, Y )  = c 
I . c . ,  s ! ( c - r - s) ! t ! ( r - t ) ! 

1 

( 5 . 2 )  

(5.3) 

(5.4a) 

(5.46) 

These expressions are easy to understand. For nodes with the same output bit, all 
sites are filled with their common bits after very long training. For nodes with opposite 
output bits for patterns 1 and 2, the expression in g(x, y )  corresponds to the fact that 
among the c inputs { j )  of a node, s are such that -S, = 6; = [f, c - r - s are such that 
S, = 6; = .$!, t are such that -S, = 6; = -[:, and r - t are such that S, = 6; = -Sf. The 
site addressed by this configuration is therefore at a site distance s + t from pattern 1, 



Associative memory in Boolean neural networks 2243 

and s i r - t  from pattern 2. Since the trained polarisation can be shown to be 
independent of s, the relation can be further simplified to yield 

(5.56) 

and the two variables x and y are completely decoupled. 
For p not very close to 1, g ( y )  has three fixed points as in (4.14). The fixed point 

at y = 4 is unstable, acting as the basin boundary. The other two stable fixed points 
are, however, no longer located at y = 0 and 1; in other words, error is present in the 
retrieved patterns. 

For p very close to 1, the two patterns become so strongly correlated that they 
cannot be distinguished during retrieval. Let us consider the case in which c >> 1 and 
e-@ << 1. In this case, the trained polarisations reduce to step functions and g ( y )  reduces 
to .~ 

g ( y )  = + + + c s  e-" (5 .6 )  

where E = (1 -p) /2  is the distance between the two patterns and the Z,(x) are modified 
Bessel functions. The slope of g ( y )  at y = f becomes 

g' (+)=cE e-"(Z0(c&)+~,(cE)) ( 5 . 7 )  
which is equal to 1 for CE = 1.8494. Thus for E < 1.8494c-', y = f  becomes a stable 
fixed point, and there is only one basin of attraction: the system cannot distinguish 
the two patterns. 

6. Storage of p uncorrelated patterns 

We are now ready to study the storage of p uncorrelated patterns. The storage capacity 
is limited by the number of adjustable variables per node. Since there are 2' sites per 
node, it is natural to consider p much larger than 1 but less than 2'(c >> 1). 

The network dynamics is much simplified within two further approximations. 
(1)  The orthogonal approximation. The overlap of uncorrelated patterns is of the 

order N- ' l2 ,  and it is important that this microscopic overlap does not significantly 
affect the performance of the network. Consider a microscopic overlap p between two 
patterns. The probability that they address the same site on a node is [( 1 + p ) / 2 ] ' ,  and 
the probability that they prescribe conflicting bits to the site is ( 1  - p ) / 2 .  Hence the 
probability of a pattern being disrupted by others is [ ( l  +p)/2]'(1 -p)/4,  the extra 
factor of 4 coming from the fact that the site outputs an incorrect bit with a probability 
of f. Averaging over a Gaussian distribution of p, the disruption probability for each 
of the p patterns is (p/2"*)exp(c2/2N), the exponential factor being due to the 
microscopic overlaps. Hence the condition that the microscopic overlaps can be 
neglected is c<< NI/* which, in the thermodynamic limit, is naturally satisfied in the 
regime c << In N already assumed within the annealed approximation. 

( 2 )  The mean-field approximation. If, during retrieval, we monitor the probability 
of error of the Ising configuration compared with a nearby stored pattern, which we 
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label as pattern 1, then this probability is dependent on the number of patterns giving 
the same output as pattern 1 at a node. The larger the number of patterns having the 
same ith output as pattern 1, the more the ith node is trained with the bit of pattern 
1, and hence the smaller the probability of error from the ith node. Therefore, in 
general, these probabilities cannot be represented by a single distance x. 

Since the patterns are uncorrelated, the dynamics of the mean-field approximation 
can be described by p distinct variables { x b ;  b = 0,. . . , p - l}, where x b  is the output 
error with respect to pattern 1 among those nodes which have b patterns with the same 
output bit as pattern 1. The averaged output distance is therefore a binomial average 
of the x b  given by 

However, when the number of stored patterns p is much greater than 1, the average 
number giving the same output is p / 2  with a standard deviation of the order p”’,  so 
that the relative deviation is of the order p- ’ ’* ,  and becomes small as p becomes large, 
justifying the replacement of conditional probabilities by a single mean-field parameter 

In order to derive the retrieval function f ( x )  for stored pattern 1, starting from a 
configuration having a finite overlap with that pattern but negligible overlap with the 
other patterns, it is necessary to evaluate the disruptions of pattern 1 at various sites. 
For a particular node, let A be the set of patterns having the same output as pattern 
1, and A its complement. Now consider a site on the node at site distances r p  from 
each of the sites addressed by pattern p. In analogy with the previous two-pattern 
example, the equilibrium occupation probability distribution of the site is given by the 
eigenvector of p-IZ,T, corresponding to the eigenvalue 1. The training matrix T, is 
given by 

X .  

i f p E A  

(6.2) 

i f p E A  

0 

0 

where T (  rp)  = d @( 1 - d)“‘” . Consequently, the trained polarisation and the U state 
probability at the site, averaged over all the other patterns, are given by 

X p ~ ’  exp[p(hap - r’)]) 
mr = Eh (( Z, exp[p(hu’ - r’)] 

Z,U exp[ p ( huP - 
Z, exp[p(ha” - r’)] U, =coth(2ph)Oh 

(6 .3)  

where U” = +1 if p E A, and -1 if p E A, and (( )) represents averaging over patterns 
2 to p .  Applying the identity R-’ = j? dz exp( -Rz) to the denominators and expressing 
the resulting integrand as a partial derivative with respect to h, the expressions factorise 
over the patterns p. Thus 

m,= Eh lom:( -I2) ~ ( ( e x p { - z e x p [ p ( h a P - r r ’ ” ) ] } ) ) .  
P J h  P 
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Noting that r" ( p  # 1 )  follows a binomial distribution, we get 

exp(-z e'")+ exp(-z e-'") 
2 

Performing the differentiation with respect to h and using integration by parts, we 
finally arrive at an expression for the disruption a,,  

- a  f (:){I -exp[-z cosh(ph) e-'']cosh[z sinh(ph) e-'']}) (6.7) 
11=0 

where a = p/2' is the storage ratio. The retrieval function follows naturally: 

As far as the equilibrium distribution is concerned, the performance of the system is 
best when the training-noise temperature is low, although this has to be compensated 
for by increasing the number of training steps. In the limit of very low noise temperature, 
namely e-'<< c-I, figure 4 shows the retrieval curve for x and a each of the order of 
2/c2. In this regime, we find that 

a ,  = a / 4  

a ,  = a c / 4  

a 2 =  Z(ac2/2)ac2/8 

a,  = 112 for r 2 3  

4 

3 

N 
\ 
N 

' 2  - 
L 

1 

/ 

I 1 2 3 0 

xc212 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

Figure 4. The retrieval curve of storing p uncorrelated patterns for x and o of the order 
2/c2 and low noise temperature. The values of ac2/2 for the three curves are 0.8, 1.0875 
and 1.5, from bottom to top respectively. The inset is the first curve for the full range of 
x for c = 20, showing the fixed points near x = O  and 4. Here qJqc = 1. 
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where 

I ( y )  = Iom dz exp{ - z - y  [ 1 -e-'/2 cosh - tanh(ph) . (i 111 (6.13) 

The vertical intercept of the retrieval curve, a /4 ,  gives the output error when (noiseless) 
patterns are presented to the network input. This intercept is effectively at zero only 
for a < 4/ N, implying that the storage capacity for errorless retrieval is a = 4/ N. The 
same result is also derived from a consideration of the optimal storage capacity [19]. 

For x of the order 2/c2, only terms up to r = 2 are important. The retrieval function 
is therefore quadratic in x. There exists a critical value a,, given by 

a,= a;(2/c2) (6.14) 

where 
- 

a; = 2 / ( 1 + h ( a ; ) ) .  (6.15) 

For qc/qr= 1, a,  is 1.0875(2/c2). As shown in figure 4, the retrieval function for a < a,  
has two fixed points, one stable and one unstable. The stable fixed point is non-zero, 
showing that the retrieved pattern has a certain error. The unstable fixed point indicates 
the basin boundary, separating the basins of attractors near x = 0 and i, corresponding 
to retrieval and non-retrieval respectively. At a = a,, the two fixed points coincide, 
and for a slightly above a,, the neighbourhood of the fixed points becomes a 'bottle- 
neck' area. Starting from an initial x smaller than the bottleneck, x approaches it on 
iteration. It stays there for a number of steps before it eventually diverges towards 
the fixed point near f. This transient behaviour diminishes as a increases away from 
the critical region. Thus for a > a,, the retrieval curve does not have any fixed points 
near x = 0, and the stored pattern cannot be retrieved. a,2' is therefore the storage 
capacity for associative memory of uncorrelated patterns. 

That the maximum storage ratio a,  is of the order 2/c2 illustrates the structure of 
storage in each node. At the storage ratio a, the average number of patterns whose 
addresses are at site distances r from a random reference site is equal to a(:).  Therefore, 
the value found for a ,  implies that at the critical storage ratio there is an average of 
about one pattern at a site distance 2. That the storage capacity scales as cK22' suggests 
that the present model is a very powerful one for memory; by contrast, a dilute 
asymmetric Hopfield-Little system with the same network topology but with synaptic 
storage has a maximum storage capacity for uncorrelated patterns of only 0 . 6 4 ~  [ 161, 
which is much smaller for large c. 

Figure 5 ( a )  shows the positions of the two fixed points near x = 0 as a function of 
the storage ratio a for a < a,. The lower fixed point gives the retrieval error and the 
upper fixed point gives the radius of attraction. As a increases, the retrieval error 
curve becomes increasingly steep until it becomes vertical at a,, where a first order 
transition of the equilibrium configuration takes place. For qc/qr= 1, the retrieval error 
jumps discontinuously at a = a,  from 2.3836/c2 to an order of $. The radius of attraction 
decreases with the storage ratio up to a,, where it merges with the retrieval error. 

Again, it is interesting to compare the system with its conventional counterpart, 
namely the dilute asymmetric Hopfield-Little network [ 161. In this conventional model, 
the retrieval function is given by 

(6.16) 

where a = p / c .  As shown in figure 5 ( b ) ,  the retrieval error, given by the stable fixed 
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ur212 U 

Figure 5. ( a )  The dependence of the two fixed points on the storage ratio for qc/qr= 1. 
The critical point Pis given by a , c 2 / 2  = 1.0875 and x*c2/2 = 1.1918. (6 )  The corresponding 
curves for the dilute asymmetric Hopfieid-Little model 1161: for CY <0.64 curve A gives 
the retrieval error and line B gives the radius of attraction; for CY > 0.64 retrieval is no 
longer possible and the error is given by line C. 

point of the curve, undergoes a second-order transition at the critical value CY, = 2 /  v = 
0.64, in contrast with the jut-order transition in the present network. Thefully connected 
symmetric Hopfield network [3], however, exhibits a first-order transition of the 
retrieval error, more analogous to the system we have been considering. 

On the other hand, the radius of attraction of the dilute asymmetric Hopfield-Little 
model [ 161 is independent of CY and takes the value i, in contrast with the @-dependent 
radius of attraction in the present model. This large basin of attraction is related to 
the ‘long-ranged’ nature of the conventional model as discussed in § 8. Rather, our 
curve for the radius of attraction as a function of the storage ratio Q in the present 
model can be compared, roughly speaking, with the stability K in perceptron models 
[20]. Since the stability K is a measure of the size of the basins of attraction [21], the 
two models share the common feature that the storage of more patterns reduces the 
size of the basin of attraction of each one. 

Finally, in this section it should, however, be stressed that although the retrieval 
error is given by a fixed point x*,  it does not necessarily imply that the final configuration 
is a stable one: it may happen that in the long-time limit, the configuration evolves 
throughout the totality of the configuration hypersphere of distance x* from the stored 
pattern, or explores only a subspace, or even approaches a stable point in the configur- 
ation space. These possibilities will be discussed in 9 9. 

7. Effects of various training parameters 

We have mentioned that the maximum storage ratio for associative memory is 
1.0875(2/c2) for qc/qr  = 1 and for low training-noise temperature. In general, however, 
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the storage of the system depends on both the probability ratio qc /qr  and the training- 
noise temperature. 

Since qc and qr respectively determine the rates at which a site enters and leaves 
the U state during training, the ratio qc/qr determines the fraction of U sites in the 
system after very long training. However, as shown in figure 6, the storage capacity 
at low training-noise temperature is only weakly dependent on qc/ qr.  For low training- 
noise temperature & is largest at qc/qr  = 0 where it takes the value 1.0968. For qc/qr >> 1,  
the asymptotic value of a, is 

4,/  9," 1 
a2 - f[ 1 - exp( -(uc2/4)] (7 .1 )  

4 / 4  " 1  
giving G - 1.0634, which is smaller than the largest & by only 3 % .  

A related issue is to compare the three-state system with the two-state one without 
the U states. Using arguments similar to those presented in § 4, we can show that the 
retrieval behaviour of the two-state system approaches that of the three-state system 
with q c / q r =  2 after long training. Its storage capacity is therefore given by & = 1.0823. 
Thus the network performances of both systems as associative memories are comparable 
after sufficiently long training in the thermodynamic limit, despite the anticipated 
superiority [ 101 of the three-state nodes. 

N c 
Figure 6. The dependence of the storage capacity a , c 2 / 2  on the ratio q, /q ,  for low training 
noise. The right arrow gives the asymptotic storage capacity when 9,/9, >> 1 ,  and the left 
arrow gives the storage capacity corresponding to the majority rule ( B  7 ) .  

For higher training-noise levels where e-' - O( c-') ,  the expressions for the disrup- 
tions up to site distance 2, by virtue of (6.7), become 

a , = -  nqc( 1 + -  ; ; ( e Y - ; - Y ) )  

J 2 ( $ ) )  
a, = ac2 ( J1 ($) + e Y - 1 - y - y 2 / 2  

8 Y2/2 

(7.2) 

(7.3) 

(7.4) 
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where e-' = y / c  and 

I eY-1-  
J1 ( y  ) = 2 1"- dz exp [ -z ( 2  + y '- " I 2 )  -y{l -e-'cosh[z tanh(ph)J} 

Y 2 / 2  

L 
dz cosh[ph + z tanh(ph)J 

J 2 ( y )  = cosh( p h )  

I eY-1-  
n e n p [ - ~ ( l c y  - ' ' I2) - y{ 1 - e-' cosh[ z tanh(ph)]} 

Y 2 / 2  
(7.6) 

and the expression for the storage parameter a7 has to be replaced by 

(7.7) 
As the noise parameter y increases, the asymptotic behaviour of a, is 

and the storage capacity becomes 

- Y"1 
a -3-f izO.7639 for qc/ qr = 0. 

(7.9) 

As shown in figure 7, the storage capacity decreases with the noise parameter for all 
values of q c / q r .  In  contrast to the case of low training-noise temperature, the storage 

1 . 2 1 ,  

-I 
Figure 7. The dependence of the storage capacity (r,c2/2 on the noise parameter y for 
9c/4r=0,0.01,0.1, 1 , I O .  Thearrowgivesthestoragecapacityforq,/q,=Owhen 1~ y<c In c. 
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capacity reduction is very sensitive to the ratio qc/ q r ,  indicating that the U sites resulting 
from the noisy training procedure play an important role in disrupting the stored 
information. 

It is interesting to note that the performance of the system is least susceptible to 
the training-noise level for qc /qr  = 0. This is because the lowest order of the training- 
noise correction at site distances 0 and 1 comes from the presence of U sites. The 
fraction of U sites diminishes for q c / 4 r + 0 ,  whereas algorithms with large values of 
qc/ qr have a greater chance to disrupt correct bits to U through the training-with-noise 
procedure. Thus for qc /qr  = 0, a training noise of the order c-’ leaves the disruptions 
at site distances 0 and 1 unaltered, as evident in (7.2) and (7.3). It merely randomises 
sites at site distance 2, as in (7.8), giving a finite storage capacity of 6 = 0.7639 as y 
becomes much greater than unity. Further calculations show that the storage capacity 
eventually deteriorates only when the noise parameter y becomes of the order of In c, 
in which case the disruptions due to incorrect bits become significant at site distances 
0 and 1. 

It seems paradoxical that the system performs best for low training-noise levels, 
while training with noise was originally introduced by Aleksander [ 101 to ensure 
associative memory. Equally puzzling, at first, is the fact that better storage performance 
is attained for zero or small values of q c / q r ,  while the step of correcting incorrect bits 
into U states in the training-with-noise algorithm was originally introduced to improve 
the training procedure. While explanatory discussions will be detailed elsewhere [ 171, 
we remark, however, that the above results apply to the equilibrium state of the network 
(i.e. after an infinite number of training steps). Algorithms with suitably higher levels 
of training noise and larger values of q c / q r ,  on the other hand, take fewer training 
steps to approach the equilibrium state, and hence are more efficient as far as the 
training procedure is concerned. It follows that the strategy for best storage perform- 
ance is to use algorithms with low training-noise levels and small values of q c / q r ,  
although this does not economise the training time. 

8. Proximity rules 

It is instructive to consider the equilibrium distribution of a site in the limit of low 
training-noise level. In this limit, we see that at any site 

Here, nA and n~ are the number of nearest neighbours, respectively, belonging to sets 
A and A defined in § 6.  In particular, (P+,  Po, P - )  = (1, 0,O) if the nearest pattern 
belongs to A, and (P+,  Po, P-) = (0, 0 , l )  if the nearest pattern belongs to A. 

We therefore conclude that the training-with-noise algorithm is equivalent to the 
following proximity rule in the limit of low training-noise level. 

The content of a site follows the pattern which is its nearest neighbour, if there is only 
one such. If it has more than one pattern as its nearest neighbour, the site isjilled according 
to the relative probability P+: Po: P- = n: :  (qc /qr)nAnA:  n i .  

The correction due to finite training noise is of the order ce-P. 
The above probability ratio can be viewed as a manifestation of detailed balance. 

At equilibrium, the transition rate from one state to the other should be the same in 
the forward and backward directions. Thus, for example, the transition rates from the 
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correct to U state and vice versa are respectively P+qcnA/p and PoqrnA/p .  Detailed 
balance therefore yields P+ : Po = nA : ( qc/  q r )  nx . 

The equivalence of the training algorithm and the proximity rule can be demon- 
strated by studying the disruptions. Consider a site at a site distance r from a particular 
pattern. The probability of having another equidistant pattern is a (E), corresponding 
for r = 0 ,  1 to the disruptions 

a,  = a14 ( 8 . 2 )  

a ,  = ac/4. (8.3) 

(Here we have taken into account the probability of 4 that the output bit of the 
interfering patterns are different, and another 4 that the output is incorrect.) These 
values are precisely those found earlier. 

The disruption at site distances 2 is most interesting. Since a site has an average 
of a c 2 / 2  patterns at site distances 2, half of them having the same output bit and half 
of them different on average, the disruption is given by the Poisson-averaged expression 

exp( - ac2/4) ac2  ( r +  1) ePh - s e-Dh 
(Q) s! ( r + l )  e P h + s  ePph a 2 = C  r !  

r, s 
(8.4) 

where the ( r ,  s)th term corresponds to the case nA = r + 1 and nA = s when there are 
r + s  nearest neighbours at site distances 2.  Using the mathematical techniques for 
manipulating the pattern-averaged trained polarisation introduced in 0 6, we arrive at 
the correct expression (6.11) for a,. 

Similarly 

for r 2 3. ( 8 . 5 )  a = 1  r 2  

The general expression (6.7) for the disruption can be interpreted similarly. It is 
a summation of a total of c terms, the sth term corresponding to the disruption by a 
pattern at a site distance s. 

It is now clear why algorithms with different ratios of q c / q r  only have a slight 
difference in their storage capacities. All of them have the same disruptions at various 
site distances, except where at site distances 2 the fraction of U sites is different. 

When q c / q r  >> 1, a site at a site distance 2 is, according to the proximity rule, almost 
certainly in the U state whenever it has another nearest neighbour at the same site 
distance, this happening with a probability 1 - exp( -ac2/4). Thus we have 

4 / q  2 1  
giving 6 - 1.0634, which is the result obtained in the last section. 

obtain 
The U state probabilities can likewise be calculated using the proximity rule. We 

(8.7) 
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(8.10) 

where 

J ( y )  = lom dz sinh[ph - z sinh(ph)] 

x expf-z cosh(ph) -y{l -exp[-z cosh(ph)]cosh[z sinh(ph)]}D. 
(8.11) 

These results are identical to those obtained by performing the pattern averaging 

It is interesting to evaluate the overall fraction of u-state sites, which is 
explicitly in (6.4) and taking the limit ePp << c-’. 

(8.12) 

The two terms in the above expression have interesting interpretations. With probability 
exp(-ac2/2), a site has no nearest neighbours up to a site distance 2, and its content 
is, according to the proximity rule, determined by nearest neighbours at site distances 
3. The average number of nearest neighbours at site distances 3 is ac3/6 >> 1, and we 
have nA = nA = ac3/ 12 with almost certainty, resulting in the first term. The second 
term describes the u-state probability when the site has nearest neighbours at site 
distances 2. 

When qc/qr >> 1, the fraction of U sites becomes 

q c / q r ’ ’ I  
( u r )  - exp( - ac2/2) + [ 1 - exp( -cyc2)/4]*. (8.13) 

This is because, for qc/qr >> 1, a site is almost certainly in the U state when either there 
are no nearest neighbours at site distances 2, or there exist some with differing output 
bits. (These two cases correspond respectively to the two terms in the above expression.) 

The u-state probability is plotted in figure 8 for qc /q r  from 0 to 4 at the critical 
storage ratio cy,. It approaches the value 0.5153 in the limit qc/qr >> 1. It is remarkable 
that as the ratio qc/qr increases, the storage capacity only decreases slightly (see figure 
5 )  although the fraction of U sites increases quite significantly. This is because associa- 
tive memory depends primarily on there being only a small disruption at a site distance 
1 from a pattern, and these sites are statistically insignificant. The sites at site distances 
2 from some pattern, although statistically significant, only have a secondary con- 
sequence for associative memory. 

It is interesting to see whether we can further increase the storage capacity beyond 
that of the above proximity rule. In this respect, we note that the storage capacity of 
the proximity rule is largest when Po = 0 (i.e. qc/qr  = 0) where C; = 1.0968. Now consider 
a modified proximity rule in which P + :  Po: P- = n > : O :  n >  where z is an exponent to 
be determined. For z = 1, the trained polarisation at a site is 

nA - nA; 
n A + n n  n : + 2 n A n A + n ;  

n >  - n i  -- - 

and the rule is equivalent to a training algorithm with qc/qr  = 2, giving C; = 1.0823. For 
z = 2, the rule is equivalent to a training algorithm with qc /q r  = 0 and hence C; = 1.0968. 
It is therefore natural to expect that the storage capacity increases with z, since the 
trained polarisations become more and more favourable. In the limit of Z + W ,  we 
obtain the following majority rule. 
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The content of a site follows the pattern which is its nearest neighbour, if there is only 
one such. I f  it has more than one pattern as its nearest neighbour, the content follows 
the majority. I f  there is no majority, the site is randomly filled with 1 or 0 with equal 
probability. 

We could also consider the use of U states for sites with no majority. There would 
be no consequence for retrieval error within the realm of validity of the annealed 
approximation. 

In this case, the disruption at a site distance 2 is given by 

which gives a storage capacity of 

(8.14) 

(8.15) 

This leads, therefore, to a further 2% increase in the storage capacity beyond that of 
the training-with-noise algorithm (see figure 6). 

We can also calculate the fraction of sites with no majgrity at G. This gives the 
maximum fraction of sites that can be filled by U without any consequences for the 
behaviour of the system within the annealed approximation. Its value is 

=e- '( lo(&) - 1) =0.1103 (8.16) 
r !  

(see figure 8). 

diffusion algorithm. 

addresses a site, its content is determined by the majority rule. 

The majority rule leads us to a new way of training the network. We call this the 

( 1 )  Each pattern is stored at the correct sites of each node. If more than one pattern 

0 . 5  t -! 

qc /qr 
Figure 8. The dependence of the fraction of sites in U states on the ratio qJ4, at the critical 
storage ratio. The right arrow gives the asymptotic fraction of U sites when qc /qr>>  1, and 
the left arrow gives the fraction of sites with no majority (i.e. nA = nn)  at the critical storage 
ratio of the majority rule. 
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( 2 )  The content of these sites are copied to their nearest neighbours which are still 
unaddressed. If more than one pattern addresses a site, its content is determined by the 
majority rule. 

( 3 )  The above process ( 2 )  is continued until all the sites are $filled. 

9. Retrieval properties 

The average retrieval properties of the Boolean model are determined by the retrieval 
function in the approximations stated above. In $ 6 ,  we have compared with the 
Hopfield model such aspects as the storage capacity and retrieval error. In order to 
compare the two models further, we are going to study two more situations. 

First we consider the evolution of two different initial configurations { S , }  and {g,} 
having the same distance from a stored pattern (say pattern 1). Because of the presence 
of U sites, outputting randomly 1 or  0 every time they are addressed, we can distinguish 
the following three types of dynamics governing the evolution of the two configurations 
when addressing U sites. 

(1) Same dynamicsfor each site. This means that, at  each instant, the same random 
bit is output for each configuration when they address the same site in a U state, but 
the output is independent when they address different sites in U states. This is equivalent 
to storing at each time instant randomly ‘quenched’ values of 1 or  0 at the sites in U 

states, so that the same output is obtained when addressed by either configuration. 
(2) Independent dynamics. This means that, at each instant, independently random 

bits are output for the two configurations if they address sites in U states (even when, 
say, they address the same site in a U state). 

( 3 )  Same dynamicsfor each node. This means that, at each instant, the same random 
bit is output from a node for each configuration when they both address a site in a U 

state (whether the sites addressed are the same or  not). 
These three types of dynamics are summarised in figure 9. 
Let us first consider the type (1) dynamics, the same for each site. As in the work 

of Derrida et a1 [16], we consider three variables: x and 2 being respectively the 

Addressed Addressed Addressed by 
by{S,) b y  { . S j j  { X I }  and {j,) 

Independent output 

Independent output 

Same output 

Same output 

Independent output 

Same output 

Figure 9. The three types of dynamics governing the evolution of two configurations. 
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distances of { S , }  and (3 , )  with respect to pattern 1, and y being the distance between 

The evolutions of x and 2 are still determined by the retrieval function (6.8). For 
{St) and {st>. 
an analysis of the evolution of y ,  let us consider the four probabilities: 

p 1 = P r o b ( c , ' = S , = 3 , ) = l - + ( x + ? + y )  (9.1) 

p2 = Prob(6f = S, = -si) =+( -x+?+y)  

p 3  = Prob(6f = - S ,  = g i )  = t (x - i + y )  

p4=  Prob([f = -Si = - ~ i ) = + ( ~ + ~ - y ) .  

(9.2) 

(9.3) 

(9.4) 
To trace the discrepancy between the two configurations, we have to consider the 
probability that either of them, but not both, is disrupted. Hence the evolution of y 
is determined by the following output function: 

C !  
A y ) =  c P;Ip;2P;3P4n4[Qn3fn4(1 - + an2+",(1 - Qf13+n,)l .  

nl+n2+n3+n4=c n , !  n2! n,! n,! 
( n * , n 3 )  # (0.0) 

(9.5) 

Here, the term corresponding to ( n , ,  n 3 )  = (0,O) is omitted. This is because when the 
two configurations address different sites, the disruption probabilities are in general 
independent, but this is not the case when the two configurations address the same site. 

As x and 2 approach x*, the above function reduces to 

g ( y )  =- 1 +- zx* y -- zy2 
a c 2 (  4 : 1 a3: (9.6) 

where Z = Z ( a c 2 / 2 )  is the integral given by (6.13). Since g' (0)  is equal to f ' ( x * )  by 
virtue of (6.8), it is less than 1 for a < a c ,  and y = 0 is the only stable fixed point. This 
means that near a stored pattern, two different initial configurations converge to the 
same fixed point, at least in the annealed approximation. This picture of a simple 
attractor is in direct contrast with the complex attractor in the case of the dilute 
asymmetric Hopfield-Little model [ 161. 

For type (2) dynamics (independent dynamics), there will be output discrepancy 
between the two configurations even when input discrepancy is absent. This is the 
case when they address the same site in a U state, hence outputting a different bit with 
probability f. Thus an extra term 

; ( f) urPE-'p; 

should be included in the retrieval function (9 .9 ,  and as x and i approach x*, (9.6) 
has to be augmented by the term 

A [ x* - !$ ( 1 + f .-*) +2$4 . 
2 + 4 c / %  

Now the retrieval function for y has a non-zero stable fixed point, and the attractor 
is therefore complex as in the case of the dilute asymmetric Hopfield-Little model [ 161. 

Type (3) dynamics (same dynamics for each node) gives a retrieval function the 
same as (9.6) for y - O( c-,), since in this regime the probability that the two configur- 
ations address different sites in U states is negligible. In this case, the attractor is again 
a simple one. 
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Another interesting situation arises when a configuration {Si} has considerable 
overlap with two patterns, {t;} and {sf}. We shall consider the case for which the two 
patterns 1 and 2 differ by a distance E considerably less than $; the other p - 2  patterns 
being random. As in § 5 ,  the evolution of the system is determined by two parameters: 
x and y being the fractional errors with respect to pattern 1 for those nodes outputting 
respectively the same and different bits for patterns 1 and 2. The retrieval functions 
for E < <  1 are given by 

(9.8) 

where b( r, s )  and c( r, s)  are the disruptions of pattern 1 at site distances r from pattern 
1 and s from pattern 2, for nodes outputting the same and different bits of the two 
patterns respectively. For qJqr = 1 in the limit of low training-noise temperature, 
proximity rule considerations yield 

b(0,O) = a/7 (9.9) 

b(0, r )  = b(r, 0) = a / 4  for i-2 1 (9.10) 

b( 1 , l )  = a c / 7  (9.11) 

b( 1 ,  r )  = b( r, 1 )  = ac/4 (9.12) 

b(2,2) = (ac2/14)K(ac2/2) (9.13) 

b(2, r )  = b(r ,  2) = (ac2/8)Z(ac2/2) for r 3 3  (9.14) 

f o r r 2 2  

where Z ( y )  is given in (6.13), 

. ( y ) = i l d d z c o s ( , . + ~ ) e x p [  - y z - p [ l - e x p (  -$z)cos:]} (9.15) 

and 

c (  r, s) = e( s - r )  a, + e( r - s) ( 1 - a,) (9.16) 

where the a, are the single-pattern disruptions employed in the previous sections. 
When E decreases from +, the increasing correlation of the two patterns causes 

mutual disruption. Thus the critical storage ratio at which the network fails to retrieve 
the two patterns drops. This drop becomes significant when E b In c/c. Indeed, when 
CE e-" - O(c- ') ,  the retrieval functions for (x, y )  near (0,O) reduce to 

g(x, y )  = 4 e-". (9.18) 

The critical storage ratio a l  for the retrieval of the two patterns is then given by 

(9.19) 
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where p = C’E e-“. Since E decreases as p increases, p is a parameter measuring the 
overlap of the two patterns. The dependence of a 1  on the overlap parameter p is 
shown in figure lO(a). 

For E - O(c-’), the critical storage ratio a ,  drops sharply. The storage in this 
regime is best expressed in terms of ro which is the average site distance between 
nearest-neighbouring patterns, namely a = ( ; ) - I (  1 << ro<< c). As derived in the appen- 
dix, the critical ro for associative memory of the two patterns obeys the scaling relation 

(9.20) 

where y* is the fixed point of the retrieval function (5.6). 
For E < 1.8494c-’, the two patterns have become so strongly correlated that the 

system cannot distinguish them. In other words, there is only one stable fixed point 
near x = 0 with y = f. In the range E - O(c-”*), the retrieval function near this fixed 
point is given by 

The critical storage ratio a2 for which the system fails to retrieve the mixed pattern is 
given by 

For E = 0, a2c2/2 = 1.9155. For a > a 2 ,  the system does not remember anything, whereas 
for a < a 2 ,  the system remembers the patterns but cannot distinguish them. The 
dependence of a2 on the distance E is shown in figure 10(b). 

We can therefore deduce the phase diagram schematically shown in figure l l ( a ) .  
Like the Hopfield model [16], we hi 

2.01 

- 
: three phases and a triple point. In general, 

2 , c  

1 . 5  

r-d -- 1 0 
U 
N 

8 

0 .5  

0 1 2 3 4 5  0 

v 
1 2 3 4 5 

c 3 ’ 2 f  

Figure 10. ( a )  The dependence of the storage ratio a , c 2 / 2  on the overlap parameter fi  
for 9,/9r= 1. ( 6 )  The dependence of the storage ratio a,c2 /2  on the distance c3’*& for 
qc /9 ,=  1. 
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E E 

Figure 11. ( a )  A schematic phase diagram in the space of pattern distance and storage 
ratio for storing two correlated patterns among other random patterns. The phases 0, 1 
and 2 are respectively the non-retrieval, non-distinguishing and retrieval phases. ( b )  The 
corresponding phase diagram for the dilute asymmetric Hopfield-Little model [ 161. 

when too many patterns are stored, the system fails to retrieve; when the stored patterns 
are fewer, the system is capable of retrieving, but fails to distinguish patterns that are 
too close together. 

For comparison, the phase diagram for the Hopfield model [ 161 is shown in figure 
1 l (b ) .  We immediately notice differences in the relative positions of the three phases. 
The non-distinguishing phase is present for all distances between the two correlated 
patterns in the Hopfield system, but is present only for small distances in the present 
model. This is because, in our system, information about a pattern is stored locally 
at a neighbourhood of sites and so, when considerably different patterns address 
different neighbourhoods of sites, no confusion arises. By contrast, the output of the 
Hopfield model is the sum of a signal term and a noise term [4], whose interference 
effect is less dependent on the Hamming distance. 

These comparisons between the two models lead us to conclude that the Boolean 
model, with the low training-noise temperature in its training-with-noise algorithm 
considered in this paper, is a ‘short-ranged model, in the sense that information about 
patterns is stored in localised neighbourhoods within each node. Interference between 
considerably different patterns is minimal, but the basins of attraction are relatively 
small. On the other hand, the Hopfield model is a long-ranged model, in the sense 
that information about patterns is stored distributively. Interference between patterns 
is always present, but the basins of attraction are relatively large (see also figure 5 ) .  

To illustrate this comparison concretely, suppose we fill a site in the ith node of 
the Boolean model in Ising representation with the number 

sgn JijSj 
J 

where the J,, are the coupling strengths of the Hopfield model with the same topology, 
and {S,} is the address of the site. The dynamics of this network is then exactly that 
of the Hopfield model. Since information about a pattern in the Hopfield model is 
embedded in the coupling strengths, it is clear that information storage is ‘delocalised’ 
among all the sites of a node, in contrast to the ‘localised storage’ of the algorithms 
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discussed in this paper. This apparently accounts for the different properties of the 
two systems. 

The high efficiency of the Aleksander network for some hard learning problems 
[lo], is also a consequence of the localised manner of storing information. In the 
parity problem, say, complementary bits must be stored in nearest-neighbouring sites 
of each node. Learning information site by site is therefore the most natural way. 

10. Conclusion 

We have performed a statistical analysis of the learning and retrieval properties of 
randomly connected Boolean neural networks as applied to pattern storage and 
recognition. In addition, we have examined various features introduced by Aleksander 
to make a Boolean network function as an  associative memory, including the U state, 
the training with noisy examples and the correction step. 

The U state was believed to embody three advantages. First, it randomises the 
choice of the next site when an  ambiguity is experienced in a retrieval process. This 
reduces the possibility of cyclic dynamics which prevent the retrieval of correct patterns. 
However, this is essentially irrelevant for networks of low enough connectivity, for 
which the annealed approximation is valid. Second, it ensures an  unbiased initial 
state, so that no pre-stored unfavourable information slows down the learning pro- 
cedure. This is concerned with the dynamics of learning and will be discussed elsewhere 
[17]. Third, three-state systems were believed to store extra information with the 
intermediate U state. However, since we have found that the system improves its storage 
capacity with the decrease of q c / q r ,  and hence the fraction of U sites, we have some 
reservations with the usual argument that the possibility of outputting U states invariably 
improves the system performance. This is explained below. 

To be sure, the probability of a site in a U state is, according to the proximity rule, 

(qc/qr)nAn.+i 
n k  + (qc/qr)nAnA + n f? 

which is maximum at nA = n A .  In other words, a node is more likely to respond with 
a ‘don’t know’ when the information derived from its training is ambiguous. However, 
this advantage can be overshadowed by the presence of other undesirable ‘don’t know’ 
responses resulting from the training procedure. Our study of the majority rule 
algorithm has revealed that it is always better to fill a site with the majority bit, if there 
is any, than with a ‘don’t know’. The training-with-noise procedure, according to the 
proximity rule, inevitably fills a site having a majority bit with some ‘don’t know’ 
responses, and these undesirable ‘don’t know’ responses reduce the storage capacity 
to a value below that of the q c / q r  = 0 system. For q c / q r >  2 ,  the proportion of U sites 
is so large that the storage capacity is even less than that of the corresponding two-state 
system. 

We believe that within the training-with-noise scheme, three-state systems are able 
to have a larger storage capacity because the introduction of the intermediate state 
makes the sites more likely to store the majority bit. This can be seen by considering 
how a majority bit is disrupted to become the minority bit during the training procedure. 
It takes two consecutive switches in the state to complete the disruption in three-state 
systems, whereas only one is required in the two-state system, a fact which is reflected 
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in the ratio P + / P - =  ( n , / n x ) ’  and n , / n A  in three-state and two-state systems respec- 
tively (independent of the ratio qc/qr  in three-state systems). Thus, provided that the 
fraction of U sites, which is determined by the ratio qc/qr,  is not too large, the 
noise-trained three-state systems will have a higher storage capacity than the corre- 
sponding two-state system. Indeed, we have shown that three-state systems with 
qc/ q r  < 2 have a consistently higher storage capacity than the analogously noise-trained 
two-state system. 

However, we have shown that the overall improvement in the storage performance 
(after very long training) is at best only marginal when we introduce the intermediate 
state. 

We have also demonstrated the virtue of the training-with-noise algorithm. To 
enable the network to function as an associative memory, information about a pattern 
has to be diffused into the neighbourhood of the appropriate sites, which is achieved 
in our case by the noisy training steps. In fact, as shown in the single pattern example 
in § 3 and  will be fully discussed elsewhere [17], systems with appropriately high 
training-noise temperatures take fewer steps to attain associative memory. By contrast, 
systems with vanishingly low levels of training noise take increasingly more steps to 
train, and systems with zero training-noise temperatures never learn. 

However, a finite training noise also has a disadvantage: it inevitably causes 
disruption and the storage capacity after very long training is reduced. 

We have also studied the effects of introducing the correction step, which was 
believed to facilitate an iterative improvement during training. By varying the parameter 
qc ,  we have arrived at the apparently surprising conclusion that systems which are 
more reluctant to correct (i.e. more stubborn) have a higher storage capacity. This is 
because after very long training, systems which are too easy to correct tend to confuse 
themselves with too many ‘don‘t know’ responses. 

However, stubborn networks d o  pay a price. As discussed elsewhere [17], systems 
with vanishingly small qc take more steps to attain their ideal storage capacities at  
equilibrium, and systems with qc = 0 never attain their ideal performance. 

The majority rule algorithm, which has a higher storage capacity than any noise- 
trained systems discussed so far, reveals a weakness of the training-with-noise pro- 
cedure, in that noise-trained systems never attain the optimal storage. Even the best 
of them, the one with a vanishingly small qc and a vanishingly low training-noise 
temperature after very long training, has a finite probability of outputting the minority 
bit at a site, according to the proximity rule. Fortunately, the difference in storage 
capacity in this case is only 2%.  

We have seen that, in common with the Hopfield model, the present model exhibits 
a memory threshold, beneath which it can store with only small errors, but at which 
it experiences a memory catastrophe. Furthermore, the radius of attraction depends 
on the number of stored patterns in a qualitatively similar way to the stability K in 
the perceptron. 

Differences exist between the two models, though. These differences can be traced 
to the short-ranged nature of the low training-noise Boolean model in contrast to the 
long-ranged Hopfield model. Since information about a pattern is stored locally in 
the sites, interference between patterns is minimal in the Boolean model. Consequently, 
the attractor of a stored pattern is simple (for at least one type of dynamics), and the 
non-distinguishing phase of two correlated patterns is greatly reduced. 

Concerning the storage capacity of the network, the training-with-noise algorithm 
enables it to store roughly (2/c3)2‘  patterns per bond, though the majority rule can 
even store slightly more. This capacity is much larger than the corresponding Hopfield 
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net, where 2/7r patterns per bond can be stored, indicating that Boolean nets have a 
great potential as neural memories. 

In terms of the number of stored patterns per bit of information, the Boolean model 
gives a value of 2/c2 compared with 0.1 for the Hopfield model with clipped synapses 
[22]. This relatively low performance is apparently due  to the relatively few bits of 
stored information used in one retrieval step. On the other hand, however, this very 
disadvantage can be a technical merit at the same time, since hardware implementation 
may be easier with the subsequently fewer wirings. 

To be fair, it may not be possible to say which is the better model, since a 
point-by-point comparison is likely to indicate that one is better in some areas of 
application but worse in others. In particular, by limiting our discussion to associative 
memories, we have not considered the well known advantage of Boolean nodes in 
dealing with linearly non-separable functions. It will therefore be interesting to study 
the Boolean model further in order to reveal its strengths and weaknesses. Various 
generalisations of the Hopfield model have been studied, including alternative learning 
rules [23], storage of correlated patterns [24], storage of pattern sequences [25] and  
many others. It would be exciting to explore and compare the capabilities of the 
Boolean models in at least some of these aspects, and to look for areas that utilise 
their unique characteristics. 
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Appendix: Retrieval of two correlated patterns of distance E - O(c-')  

We shall derive the relation (9.20) in this appendix. In  the regime of very low storage 
ratio, the retrieval function g(x, y ) ,  equation (9.8), approaches that for the storage of 
two correlated patterns in the absence of other patterns. The fixed point y* is therefore 
that of the stable fixed point of (5.6). The transition from retrieval to non-retrieval 
takes place when the coefficient of x in f ( x ,  y * )  is essentially 1. According to (9.7), 
this coefficient is 

The disruptions 6(s, t )  in this low storage regime for q c / q r =  1 is given by 
C m ~ n l s , f )  

for min( s, t )  < r,, and s # t I- 4 min(s, t ) !  

b(s ,  t)' c y <  1 7 s !  f o r s  = t <  ro 

I: for min(s, t )  3 ro 
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where ro is the average site-distance between nearest neighbouring patterns, and  is 
related to the storage ratio a by 

cy 2 (2) I". 

The coefficient ( A l )  can therefore be written as the sum of three terms: 
(cey*)' [C&(1 - y * ) ] '  C Y + ]  - ac e - c c  - 

4 T<r .y<r ( ,  S !  t !  ( s + l ) !  

( C & Y * ) '  [ c ( o ( l  -y*)]'  C ' + l  +-e-" f fc  c - 
4 i < y , r < r o s !  t !  ( t + l ) !  

+-e-'F - 
7 S < T "  s !  

(C&Y*)' [CE(l-y*)IS cs+l 
S !  ( s + l ) ! .  ac c 

Consider first the last term in (A4), which can be written as 

x exp[cey* e-'""'' +ce ( l -y* )e"+ce" ] .  (445) 
Performing the integration over 0 using the method of steepest descent, we have 

exp(+i+ + j i 4 )  
- 

(A6) 
1 exp[c&(l - Y * )  e'd+2\/c'&y* e-i*L12-lm12 

[4TC(&y*)3'2]'/2 
X 

Another integration over 4, again using the method of steepest descent, yields 

7 
(YC 

and a final use of the method of steepest descent allows us to write the expression as 

> .  (A81 

Similar calculations show that the first two terms of ( A l )  are of the order r;' higher, 
and  hence negligible. The transition from retrieval to non-retrieval, given by (9.20), 
is obtained by putting (A31 into (A8), which is then equated to 1. 

ac& e-'' ( e  3 3 2 *  c E y r i l  - Y * )  rn 

7 ( 2 ~ ) ~ " ~ ' ~ ' y * (  1 - y * )  
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